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FOREWORD

This is the sixth quarterly report submitted after Modification Number 6 to

Contract Number NAS 8-2696. The report covers the technical progress of

"Research and Development on Fuel Cell Systems" for the period of October

1, 1965 through December B1, 1965.

Work under this contract is being performed by the Research Division of

Allis-Chalmers, Milwaukee, Wisconsin. Mr. R. M. Casper, a Vice-Presi-

dent of the Company, is the Director of Research. The Program Manager,

Mr. J. L. Platner, reports directly to the Director of Research.

A project-type organization has been formed to carry out the program speci-

fied in the contract. The Program Manager has direct responsibility for the

management and technical aspects of the program. Program management

includes: D. P. Ghere, Assistant Program Manager; Dr. J. R. Hurley,

Manager, Systems Research and Development; P. D. Hess, Manager, En-

gineering; R. E. Lochen, Manager, Fabrication and Testing; C. R. Martin,

Manager, Quality Assurance; and Gunnar Johnson, Manager, Business

Administration.
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ABSTRACT

During this reporting period, work was continued in the three major task

areas defined in this contract.

Under Part I Tasks (Research and Technology) cell testing has continued

in the following areas:

Reactant Impurity Tests - A test cell was operated with 0.5% argon in

the reactant oxygen to establish performance and characteristics following

purge and to investigate performance effects of operating with insufficient

purge. No permanent performance effects resulting from "strangulation"

under load were observed.

Anode Catalyst Density. - From the results of testing cells using anodes

with various catalyst densities, it has been determined that catalyst densities

less than 30]30 rag/in 2 of Pt and Pd are not sufficient to provide satisfactory

life performance.

Environmental Storage - Testing to determine the effects of high temperature

storage (121°C)and low temperature cycling -174°C to +88°C is continuing.

Results to date indicate that the electrical performance has not been signifi-

cantly changed during the test.

Water Transport Matrix Evaluation - The reliability of a thicker water

transport matrix has been demonstrated in a test cell which was operated

for 2526.5 hours.

Cell Matrix Analysis - Analysis of a number of test cells using 30 mil

and Z0 rail cell matrices has indicated that better performance was obtained

with the 20 rail matrix.

-ii-
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In addition, the dynamic gas flow characteristics in the cell were duplicated

by a flow model to determine the effectiveness of the manifolding design of

the fuel cell plates. Results of these tests indicate that the present design

is adequate.

Under Part II Tasks {Breadboard Fuel Cell Systems) cell sections removed

from the MSC 1.8 KW Fuel Cell breadboard were flushed with KOH to deter-

mine if rejuvenation of spent cells is possible. Test results have shown that

the rejuvenated cells have been restored to their initial performance in the

breadboard stack.

Systems fabrication and testing is continuing under Part III Tasks. The

purpose of the testing of these 2.0 KW fuel cell power systems is primarily

for engineering evaluation of the design and the capability of self-sustained

automatic operation as an integrated system. The following is a brief

summary of the status of these systems.

System No. 5 - This open loop system (no water recovery) was the first

unit in this series to be operated as an integrated system. The system was

successful in attaining the primary objective of evaluating the automatic

operation of the integrated subsystems. Testing of this unit was terminated

after 250 hours of operation due to leakage. The stack for this system was

constructed with 30 mil water removal matrices. Subsequent testing has

shown that increasing the thickness of this matrix to 50 mils will greatly

improve the performance life of the system. As a result, the centerline

design was changed to incorporate the 50 rail matrices.

System No. 2 - This first closed loop system (with water recovery) was

successful in accomplishing the operation of all subsystems as a complete

integrated system. This system was operated for 873 hours, exceeding

its performance goal of 720 hours.

System No. 3 - This open loop system successfully passed all its system

acceptance tests and was shipped to NASA-MSFC in August, 1965.

-iii-
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System No. 4 - This was the first system constructed with the thicker

water removal matrix. As an open loop system, its performance was

satisfactory, but it was determined during closed loop operation that the

KOH loading of the water removal matrix was not compatible with a Water

Recovery Subsystem. It was determined that the vapor pressure in the

water removal cavity was too low for effective and efficient condensation

of the vapor in the WRS. Special test sections were constructed with mod-

ified KOH loading in the water removal matrices and an opt_um KOH

loading for the matrix was determined which resolved this problem.

As a result of these tests, the centerline specification has been changed to

adjust the KOH loading. System No. 4 is still on test having exceeded 800

hours of operation under load.

System No. 8 - This open loop system successfully passed all its system

acceptance tests and was shipped to NASA-MSFC in December, 1965.

System No. 6 - This closed loop system using the thicker water removal

matrices and the optimum KOH loading has successfully completed its

subsystem acceptance tests, and is being assembled into a complete system.

The unit is scheduled for delivery to NASA-MSC in February, 1966.

System No. 1 - This is an equivalent system which will be used for qualifi-

cation type testing and is not scheduled for operation as a complete system.

The stack for this system has successfully completed its acceptance test.

System No. 7 - This system is in the process of being fabricated, and is

scheduled for final assembly in January, 1966. It will be used for in-house

evaluation testing at Allis-Chalmers.

A Program Analysis is included at the back of this report which assesses

the work performed during this period and interprets the results obtained

in relation to the program objectives.

-iv-
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INTRODUC TION

This report covers the technical progress accomplished under Modification

Number 6 and 9 to Contract Nu_nbcr NAS 8-2696 during the period of October

1, 1965 through December 31, 1965.

The report is divided into the following three main sections corresponding

to Part I, II, and III Tasks defined in the modified contract.

Part I Tasks -

Part H Tasks -

Part HI Tasks -

Research and Technology

Breadboard and Experimental Items

System Test Models

For a detailed definition and explanation of these tasks, see the First Quart-

erly Report, NAS 8-Z696-QPR-001, revised January Z0, 1965.

-1-
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PART I TASKS

RESEARCH AND TECHNOLOGY

FUEL CELL WARMUP THROUGH SELF-EXCITATION

Introduction

In an isolated fuel cell system, i.e., a system without any auxiliary energy

source, it is desired to bring the cellmodule up to operating temperature

using its own energy source.

A simple closed form function relates the absolute temperature to time.

This function determines the warmup time of a cell module from initial temp-

erature, T , to operating temperature, T. In the derivation of this function,
O

it is assumed that:

(1) All energy developed by the cell module is returned to the module as

heat energy,

(z) The resistive impedance of the cell heaters remains substantially

constant,

(3) Heat loss is due principally to Newtonian cooling; the Stefan-Boltzman

radiant cooling is negligible.

Neglecting heat losses, this function is:

t = In
I aT - b

AK aT - b
o

whe re

t = time in seconds

-Z-
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T = initial module temperature and environn_ent temperature (°K)
o

T = final module temperature (°K)

a and b

K ___

A

= constants, characteristics of the energy-temperature relation-

ship for electrodes

constant, a physical characteristic of the system relating

system mass, specific heat, and the mechanical equivalent

of heat

total electrode area of module (cm 2)

Warmup Time

Calculation of the warmup time required to raise the cell module temperature

from -18 to 88 ° C (0 to 190 ° F) results in:

t = 1.59 hours assuming a system specific heat of 20 Btu/°F

t = 1.98 hours assuming a system specific heat of 25 Btu/°F

These results agree quite well with measured or other calculated values.

Additional assumptions are that the maximum heat input to the system is

1,600 watts, thereby, limiting the maximum current density to 150 ma/cm 2

2
at 0.9 volt with 17, Z80 cm of active electrode surface in the module.

Effects of Module Size

Warmup time is the same for any size system if heat loss is neglected and

the ratio of support components (canister, fans, etc. ) to cell mass is the

same. However, a larger system generally has a more favorable surface-

to-volume ratio, and a smaller support component-to-cell mass ratio.

Thus, it is apparent that the larger system will have a faster warmup time.

-3-



Critical Heat Loss and System Decay

Under certain conditions, the rate of heat loss could exceed the rate of in-

put, and the energy output would decay to zero. This condition could result

from an unusual design configuration or an extreme temperature differential.

Considering cooling, the equation for final module temperature, T, is

T = T e (Ka - G) t _ Kb- GT o e(Ka - G)t + Kb - GT o
o Ka - G Ka - G

where G is the Newtonian cooling coefficient.

Decay would result when the Newtonian cooling coefficient exceeds the value

of Ka, thus causing the exponent to be negative.

De r ivation s

By the conservation of energy

dQ MC dT
dt - A d-t- = q ( 1 )

whe re

d__g = rate of heat flow (cal/sec cm 2)
dt

M = mass (gm)

C = specific heat (cal/gm °C)

2
A = total electrode area of module (cm)

Rearranging the above equation

A
dT - MC qdt

-4-
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But q = W/J; therefore

A
dT - Wdt

MCJ

the rate of temperature change due to internal heat generation only.

(3)

J is the mechanical equivalent heat (4.18 watts/cal},
2

generation rate in watts/sec cm .

and W is the power

A
Let K be a system constant defined as K -

MCJ

The refore

dT = KWdt (4)

Due to Newtonian cooling only,

dT = -(T -To)Gdt (s)

and

W = aT -b (refer to Equation 12)

Then the rate of temperature change due to both heat generation and cooling

can be obtained by adding Equations 3 and 5.

dT = _(aT -b)-(T -To)_t (6)

Integrating this equation

T =y
dT dt

T T(Ka-G)-(Kb-T G)o o
O

(7)
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This has as a solution

(Ka -G)
In _T(Ka -G) -(Kb-ToG) 1 t (8)

Solving for T

T = T e (Ka -G)t _ Kb e,Kai _G _ t

o (Ka -G)

GT Kb -GT
+ o e(Ka -G)t o

(Ka -G) Ka -G

(9)

Considering the heat loss as negligible, Equation (8) reduces to

1 lnEaT -b 7 =

_ l__o-_] (lO)

and

aKt b aKt b
T = T e e + (11)

o a a

Determination of Constants

An empirical equation approximating data for operation of a fuel cell at

various temperatures and corrected for a constant external impedance is of

the type

W = aT -b { 12)

whe re

T = temperature (°K)

W = watts/cm 2of electrode area

-6-
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From the data given below which was determined from single section tests:

W = 0.001162T -0.281

a = 0.001162

b = 0.281
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Reference

NAS 8-2696

MPR-012

NAS 8-2696

MPR- 012

NAS 8-2696

MPR-012

NAS 8-2696

MPR-014

Cell

Temperature
oK

283

Z88.6

305

361

Current

Density
amp / cm 2

0.09

0. I

0.117

0.17

Cell

Voltage

0.53

P owe r

Density 2
watts/cm

0.476

0.59

0.67

0.9

0.059

0. 0785

0.138

Assuming a typical heater load of 1600 watts at 80°C and V = 28 volts, then

the current, i, will be 57.2 amperes.

The system specific heat, MC is 20 Btu/°F (9,080 cal/°C)

The total electrode area of the module, A, is calculated as

A = {929 cm 2/ft 2) {0.4 ft 2) (33) = 1Z, 280 cm 2/module

It is then possible to determine the value of the constant K

K A 12,280- - = 0. 325
MC5 (9, 080) (4.18)

-7-
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MOMENT OF INERTIA STUDIES

Experimental Method

An accurate experimental method for determining the moment of inertia of

an object with a complex configuration has been developed. Moment of in-

ertia data for the fuel cell is necessary for space mechanics calculations.

The method employs the properties of a torsion pendulum. A circular plat-

form of suitable size and mass (Figure 1) is suspended by three long steel

wires equally spaced around the platform periphery. The object to be measur-

ed is placed on the platform with its center of gravity at the platform center

and the desired axis vertical. The platform is gently rotated about its verti-

cal axis so that it oscillates slightly. By timing the number of these oscilla-

tions, the average period of oscillation can be determined. Using the follow-

ing equation, the moment of inertia of the object, I , can be calculated
o

(Ip+I) 1
t = 2_ o

(m +mp o )gr2

whe re

I
P

= moment of inertia of the platform about the axis of oscillation

I = moment of inertia of the object (fuel cell) about the axis of oscillation
O

In
P

rn
o

= length of support wires

= radius from the support wires to the center of oscillation

= mass of the supports

= mass of object (fuel cell)

= period of oscillation

-8-
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A high degree of accuracy can bc obtained with this n_.c,Ulod provi(K _, :, .....

angle of rotation is small (less than five degrees), the, ratio of I /I is grc:,'-
o p

er than five, and 1 is large compared to r. If the oscillations are too rapid,

viscous damping will affect the accuracy of the measureIvmnts.

Estimation of the Monlents of Inertia

.kn estimate of the moment of inertia of a 33 section fuel cell stack and

canister weighing 1Z5.5 pounds was made by numerical caicuiation involv-

ing the mass and radius of gyration of each component.

x-axis

y-axis

z -axis

along the length of a plate,

along the width of a plate,

along the length of the stack,

the corresponding moments of inertia about the center of mass are

I = 4.3 slug-ft Z,
x

I = 4.6 slug-ft Z,
Y

I = 0.43 slug-ft z.
Z

The estimated accuracy of the moment of inertia using this method is + 15

percent. The center of mass is located approximately 3/16 inch below the

geometrical center of the stack.

CELL MATRIX ANALYSIS

Introduction

All single section test cells, numbered 59 and above, have been investigated,

however, only 11 of these cells were constructed and operated in a manner

similar enough to warrant comparison. The performance of each cell was

compared with respect to:

-9-
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(1) Degradation

(a) microvolts/hour

(b) microvolts/ampere -hour

(z) Lifetime

(a) hours

(b) ampe re -hour s

(3) V-A data after 16, 000 ampere-hours

(4) Probable cause of failure

Results

The degradation rate of the ceils having 30 mil electrolyte lnatrices was

l
Z-g times higher than that of the Z0 mii ceils.

Life time was not a very good figure of merit for these cells, since it was

not usually determined by the ceil matrix. The lifetimes of the two classes

of cells were approximately the same.

After 16,000 ampere-hours of operation, the voltage at 80 amperes of the

20 mil ceils averaged 33 millivolts higher than that of the 30 nail cells.

The cells exhibited no failure pattern. One 30 mil cell (#78) was shut down

due to a cross leak. Three of the 20 mil celis (Nos. 59, 60, and 62) failed

due to both cavity and cross leaks. The order of occurance of the leaks

could not be determined. To date, the longest lifetime, in terms of ampere-

hours, is possessed by a 20 mil ceil {#60).

The data obtained from this analysis is presented in Table I.

-10-
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C omme nt s

The results of this analysis are limited somewhat in accuracy for the following

reasons:

(!) The cell population was small,

(z) Operating conditions (from ceil to cell, and within one ceil) varied

widely,

(3) Failures were not sufficiently documented,

(4) Some tests have not yet been terminated.

Each cell exhibited a degradation band, i.e, any value of degradation within

the band may be achieved by a judicious choice of time interval. The degrada-

tion band, along with the value of degradation for the longest time interval for

each cell has been plotted against the extent to which the electrolyte penetrat-

ed the electrodes during operation. This is shown in Figure 2. It can be seen

that the 20 rail cells were operated under wetter conditions than the 30 rail

cells.

Conclusions

Based on this cell analysis, a 20 mil cell matrix is recommended for future

cells.

The wetter operation of the 20 mil cells n_ay be a contribution to their lower

and more stable degradation rates.

Cavity pressure settings should be based on electrolyte penetration in addition

to voltage.

SMALL CELL TESTS

Single section (two parallel 0.Z ft2cells) testing was performed in five areas:

-IZ-
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(1)

{z)

(3)

(4)

(5)

Evaluation of reactant gas impurities on cell performance,

Testing of modified electrodes,

Environmental testing,

Evaluation of KOH flushing on electrical performance, and

De sign developrnent te sting.

Reactant Impurity Testing

One section was tested to determine the effect of 0.5 _ 0. ^^_uucV0 argon in the

reactant oxygen on fuel cell performance and operating life. The test was

conducted in three segments. The first and third segments (0 to 100 hours

and 283 to 1137 hours, respectively) were run using standard reactant gases.

The second segment was run using the special oxygen-argon mixture.

Voltage versus time data from the first and third segments was fitted with a

linear function by the least squares method. The results of that fit are given

below.

Current Density (ma/cm z)

Zero Time Potential from

Least Squares Curve (my)

Degradation Rate (mv/hour)

Standard Deviation (mv)

First Segment
0 to 100 hours

Third Segment
283 to 1137 hours

107.7 107.7

953 934.2

170.9 66.7

1.94 6.2

During the second segment, a series of runs was made to establish performance

and characteristics following Furge and to investigate the transient and per-

manent effects of operating with insufficient purge.

Voltage degradation as a function of purge cycle length and load is shown

in Figure 3. The difference in voltage reduction for the various loads are

thought to be the result of differences in distribution of inerts in the oxygen

plate manifold resulting from diffusion.

-13-
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The average voltage decay versus time for operation without purge and at

constant load current densities of Z15 and 150 ma/cm 2 is shown in Figure 4.

Figure 5 presents the same function for constant load impedances of 10, 16,

24, and 58 milliohms. No permanent effects resulting from "strangulation"

under load were observed.

Electrode Evaluation Tests

Anode Catalyst Density - The effect of anode catalyst density on fuel cell

electrical performance has been investigated. Modules with densities of 10,

15, 20, and 30 mg/in 2 of platinum and palladium were tested. The resulting

degradation rates are presented below.

Plating

10/10

15/15

ZOIZO

30/30

Average Degradation Rate

4500 microvolt s/hour

1500 microvolts/hour

500 microvolts/hour

60 microvolts/hour

Four-cell units were used for the 10/10, 15/15, and Z0/20 density tests,

while the 30/30 density tests were made with double-cellunits. The results

indicate that a catalyst density less than 30/30 rag/in z is not sufficient to

provide satisfactory life performance.

Modified HYSAC # 8 Electrodes Two double-cell units have been tested to

evaluate the performance of HYSAC # 8 electrodes from Lot 4-6-8. One unit

was fabricated with an AC-464 nickel anode plaque, and the other with a

Clevite anode plaque. The plating density was 30/30 mg/in z for all anodes.

The results indicate a performance comparable to the standard HYSAC # 8

electrode.

Modified Clevite Nickel Electrodes - One double-cell unit has been tested

to determine the performance of a special Clevite nickel anode. The unit

has been operated for approximately 640 hours at a constant load of 80 amperes.

-14-
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Degradation over this period has been approximately 100 microvolts/hour

from an initial value of 0.865 volts. This performance compares favorably

with the conventional Clevite electrode in a similar cell configuration.

Cyanamid AB-40 Electrodes - A cell unit using the Cyanamid AB-40 elec-

trode as the anode and the standard HYSAC # 8 electrode as the cathode has

been operated for approximately 900 hours at a constant load of 80 amperes.

The degradation rate over this interval was 26 microvolts/hour.

AC-464 Nickel Electrode - The performance of the _AC-464 nickel anode with

a standard HYSAC # 8 cathode has been evaluated on two double-cell units.

In both units, the voltage degradation rate exceeded the rate for standard

Clevite electrode s.

Environmental Storage

High Temperature Storage - Testing of one of the units in the current series

was terminated after 140 hours of pre-storage operation due to poor perfor-

mance. This particular unit was constructed with gold-plated plates and was

operated initially at 210°F. A second unit, using conventional plates, has

logged over 200 hours of storage time at 250°F.

Low Temperature Storage - A total of 1,050 hours of operation has been

accumulated on a module undergoing low temperature environmental testing.

The module was first stored at -35°C for 150 hours and then subjected to the

temperature cycles presented in Table II. All cavities were filled with

helium at atmospheric pressure. Voltage degradation data for the first 800

hours of operation is presented in Table III. The results indicate that electri-

cal performance has not been significantly changed by low temperature cycling.
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TABLE II

Temperature Cycles for Low Temperature Storage Test

I

I

I
I

I
I
I

I
I

I
I
I

I

I

Segment

1

Z

3

4

5

6

7

8

NOTE:

De scription

150-hour Storage

Temperature Cycle

Temperature Cycle

Temperature Cycle

Temperature Cycle

Temperature Cycle

Temperature Cycle

Temperature Cycle

Total Operation
Time (hours)

200

306

578

738

761

790

817

860

Temperature
(°c)

-35°C

-174 to + 88

- 107 to + 88

-165 to + 88

- 33to+ 88

- 72 to + 88

- 66 to + 88

- 70 to + 88
=,

All operating time between segments was at the following conditions:

Reactant Pres sure:

Cavity Pre s sure:

Temperature:

Current Density:

2. 5 atm

22-5 mm of Hg

88°C
2

107.7 ma/cm

-16-
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TABLE III

Voltage Degradation for First 800 Hours

of Low Temperature Storage Test

Current Density (ma/cm Z)

Initial Potential (my)

Degradation Rate {]Jv/hr)

Standard Deviation

Single Segment Fit
0 to 800 Hours 4 to zoo

Hour s

Double Segment Fit
200 to 800

Hour s

107.7

957. Z4

59.63

5. Z9

107.7

966.4

118.7

3.51

I07.7

948.7

44. 6

4. 34
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Evaluation of KOH Flushing on Electrical Performance

In order to evaluate the effects of KOH flushing on the performance of fuel

cells that have been operated for an extended period, a number of double-

cell sections were removed intact during the MSC I. 8 KW fuel cell bread-

board disassembly and placed between end plates for individual testing. One

of the sections was operated, without special treatment, at a current density

of 53.9 ma/cm 2 for 10. 3 hours. Its electrical output was essentially the

with KOH and operated at 107.7 ma/cm 2 for 450 hours. A comparison of

the voltage-current characteristics of this section before and after KOH

treatment is shown in Figure 6. It is apparent that the KOH treatment raised

the section's output above its initial performance in the breadboard.

De sign Development Tests

Water Transport Matrix Evaluation - Life testing of Cell # 77 was terminated

after 2526. 5 hours of operation under load. Although the cell was still oper-

able, performance was quite low. However, the design goal of 2, 500 hours

of operation from the standpoint of water matrix integrity has been achieved.

System # 6 Design Verification - Two four-cell units have been built accord-

ing to the specifications given in Table IV and operated for 792 and 768 hours,

respectively. The performance, operating stability, and voltage degradation

of the cells employing the 160 mesh screen supported water removal matrix

appeared to be superior to the other types tested.

2 KW Fuel Cell Breadboard # 4 Design Verification - Two double-cell

modules have been tested for Breadboard # 4 verification. The testing of one

module included a period of 18 hours on standby at operating temperature.

The effects of standby shutdown on performance were not significantly differ-

ent than those arising for normal shutdown. This unit was operated for 1, 362

hours before testing was terminated. A second unit was operated for 960 hours

prior to test termination• The performance of both test units was good.
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DATA ACQUISITION SYSTEM

Specifications for a Data Acquisition System have been formalized and the

system has been ordered.

The system will include the following three modes of operation.

(i) Continuous logging at set time intervals with a variable home position.

n,_.,,_,_., scans, t),,._,r_),=m ,.,iH read h,,e nnt record a pre_e!eeted

channel.

(z) Manual initiation of each scan. Time interval initiation is switched

out automatically.

(3) Manual logging of any preselected channel. Selection is by a 3-decade

thumb-wheel switch.

The mode of recording is selected independently of the mode of operation.

Under any mode of operation, either or both means of recording (paper

and magnetic tape) may be used. The only exception is in the operation of

the comparators, in which case recording is only on paper tape.

Time will be recorded at the beginning of each scan and each time a compara-

tot commands a print.
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The paper tape format will be as follows:

Column 1Z 11 10

Channel Number

8 7 6 5 4 3 g 1

Data Value with Decimal

automatically placed. Time

in hours, minutes and seconds.

7,_ 4._ I"_l,,v..e,*,. _ _lnn_-Pmse d

Function Symbol

DC Positive Blank

DC Negative

AC A

Frequency F

Time P

Range . Symbol

AC Blank

DC 1 or Z

Frequency 1, 2, or 3

Readings commanded by either comparator

all other readings - Blank
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Magnetic tape format will be as follows:

Each scan will constitute one record. The first word of each record will

be the time. The time will be expressed in a six digit word and the channel

data will be presented in an eleven digit word.

Time Format: Recording is from Column 1 to Column 6

Column 1 2 3 4 5 6

Seconds - MSD First

Minutes - MSD First

Hours - MSD First

Data Format: Recording is from Column 1 to Column 11

1 2 3 4 6 7 8 9 10 11

Data Value - MSD First

Range

Function

Channel Number MSD First 001 to 999

Each record is followed by a longitudinal parity and a 3/4 inch gap. Verti-

cal parity may be selected plus or minus as desired. Recording density may

be either 200 or 556 bits/inch. Change over requires replacement of two

cards, which are supplied.

-22 °
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CELL GAS FLOW CHARACTERISTICS

Introduction

A flow model that duplicates the reactant gas flow characteristics has been

operated to determine the effectiveness of the manifolding design of the fuel

cell plates. Water and silicon fluids were used to simulate the oxygen and

hydrogen flow, respectively. These liquids were chosen because, at con-

_-==us ..... y _ .... Re_.old' svenient experimental flow rates and pressure _--; _'_ " •....

numbers corresponding to the gas flow in a fuel cell plate, thus assuring the

dynamical equivalence of the model. Four plate designs were tested; a

standard and a specially modified oxygen plate (Figure 7) and a standard

and specially modified hydrogen plate (Figure 8). Color photographs, taken

through a plexiglass window in the model, provided a graphical description

of the flow patterns.

Description of Test

The fuel cell plate was sandwiched between a sheet of clear plexiglass and a

filter system. The plexiglass allowed for observing and photographing the

flow patterns. The liquid was fed into the plate through an EDM port, and

the filter, composed of alternate layers of asbestos and fine mesh screen,

was adjusted to produce a liquid flow rate that would correspond to the

stoichiometric consumption of reactant gas. A valve at the second EDM port

allowed for the inclusion of a purge mode simulation. Two five gallon tanks

mounted above the test fixture, supplied the liquids at the proper pressure

head. Each tank was filled with the same liquid; one clear, the other dyed.

The test fixture was mounted on a ring stand and leveled. Clear liquid from

one of the supply tanks was then fed into the test plate. By compressing the

filter system, the proper flow rate was established. If the simulation was

to be of a purge mode, the height of the orifice of the flexible tubing leading

from the purge valve was adjusted until the purge flow was 1.5 times the

consumption flow. The flow rates were continually measured and adjusted

until all transients had died out. Switching the supply liquid from clear to

colored permitted the observation of the flow pattern within the test plate.
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Determination of Model Parameters

In order to simulate fuel cell operation, the liquid flow model must operate

under conditions equivalent to fuel cell operating conditions.

If a fuel cell is producing a current of 80 amperes, the flow of oxygen into

a single plate is

nF
= Z.65 cm3/sec (corrected to 190°F and ZZ psig)

whe re

nF = Faraday's constant for oxygen

I = fuel cell current (amperes)

2
The area of the inlet EDM port, A, is 0. 0645 cm

of oxygen gas through the port is

Therefore, the velocity

V = --Q = 41.1 cm/sec
A

The Reynold's number for the oxygen flow through the EDM port is defined

as

VD

NRe - v

whe re

v = kinematic viscosity of oxygen at operating conditions

(9.29 x 10 -2 cruZ/see)

D = a characteristic linear dimension of the flow which is

arbitrarily taken as 1 cm.

the n

NRe = 443

-24-
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To attain dynamic equivalence, the Reynold's number of the liquid flow in

the EDM port of the model must also equal 443. Water was chosen as the

simulating liquid for oxygen. For water at roon] temperature, v - 1.0 x
Z

10 -2 cm /sec. Since an actual fuel cell plate was used in the model, the

characteristic dimension, D, is also 1 cm. Solving for V and Q, respectively,

gives 4.43 cm/sec and 0.286 cm3/sec. Therefore, a water flow rate of

0.286 cm3/sec through the flow model will produce the same flow pattern

as oxygen would in a fuel ceii operating at 80 amperes.

Similar calculations have been made for the silicon fluid used to simulate

the hydrogen flow.

Re sult s

Sketches of the flow patterns were made from the original color photographs

and are included in this report. The curves drawn in the sketches represent

the approximate position of the boundary separating the incoming dyed fluid

from the clear fluid initially present in the plate.

Oxygen Plates - Figure 9 shows the oxygen gas flow in a standard plate.

Curve 5 indicates that the flow resistance along the webbing area is less

than that across the slot and groove area. An explanation of this effect was

afforded by an unforeseen error. During the initial test run, one of the

plates used was unplated. The simulating liquid, water, reacted with the

raw magnesium to form magnesium oxide and free hydrogen gas. When the

almost imperceptible hydrogen bubbles formed in the webbing area, they

were swept along the webbing at a uniform velocity. However, those formed

in the slot and groove area were accelerated across the groove, and then

lost momentum as they entered the relatively larger volume of the next slot.

Hence, the continual variation in available volume required a continual

variation in momentum, which was responsible for the increased flow resist-

ance.

The U-shaped modified oxygen plate was designed in an attempt to make the

flow boundary sweep across the plate with greater uniformity. The gas flow

in this plate is depicted in Figure I0. As can be seen, the flow boundary

-25 -



I
I

I
I
I

I

I

I
I
I

I
I
I

I
I
I

I
I

maintains a uniform sweep for Curves Z, 3, and 4. Unfortunately, the neck

of the U was made too large, and the pattern is disrupted as the fluid enters

the left side of the U.

Figure ii shows the flow during purge of a standard oxygen plate. The non-

distinct boundaries indicate that a substantial amount of mixing and diffusion

occurs even during purge. Curve 3 shows that even though the purge is only

.........hallcu_,p1=_=u,'-*-_some v_;*h_ fresh incoming gas has already traveled down

the webbing, across the last slot, and out the purge port. The remaining

three seconds of purge is, therefore, inefficient. At the end of a six-second

purge, a section of the plate (approximated by Curve 4) had not been thoroughly

swept out.

The purge of the modified oxygen plate, Figure 12, shows less mixing and

diffusion in the first three seconds, since the boundary itself is smaller.

After three seconds of purge, the over-sized neck of the U has again disrupt-

ed the intent of the de sign.

Hydrogen Plates - The flow characteristics of the standard hydrogen plate,

shown in Figure 13, seem to be quite satisfactory.

The modified plate (Figure 14), having a set of four extra-deep grooves in

line with eadh EDM port, exhibited an inferior flow pattern. The variation

of groove depth across the plate prevented a uniform flow pattern from

developing,

The purge flow pattern of a standard hydrogen plate is shown in Figure 15.

After a six second purge (at 31 amperes) only a very small section of the

plate (approximated by Curve 6} has not been completely swept out.

The purge characteristic of the modified hydrogen plate is very poor.

Figure 16 shows that the flow is dominated by the two deep groove sections.

Approximately one-quarter of the plate has not been influenced at all by the

six-second purge.
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Conclusions

In general, Figures 13 and 15 for the standard hydrogen plate indicate that

the present design is adequate. Multiple or expanded inlet ports, which in

general may tend to decrease water removal matrix dehydration, have not

been tested.

It is evident from Figures 14 and 16 that the slot and groove design of any

...... _l-lu_u k ...... "¢^-_ as possible. Th_ _]_ght rh_nge in depth ofone pi_L_ .... 1._ u_ _ UAAAA_AA_A .................

some of the grooves had a very substantial and detrimental effect on the flow

pattern. If the internal grid is uniform, the flow pattern is primarily deter-

mined by the position of the ports and the shape of the boundaries.

It is possible to redesign the present oxygen plate to obtain a more uniform

flow pattern and a more efficient purge sweep. Figures 10 and 1Z indicate

that this may be accomplished by a longer, and perhaps narrower, central

obstruction with both inlet and purge ports on the same edge of the plate.

If the ports are to be located on opposite ends of the plate, the disparity

of flow resistance between the webbing area and the slot and groove area

should be reduced. This can probably be done by including webbing in the

slots adjacent to the EDM ports. Further testing would be the only way to

verify the effectiveness of this arrangement.
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PART II TASKS

BREADBOARD AND EXPERIMENTAL ITEMS

MSC 1.8 KW FUEL CELL BREADBOARD

The unit has been disassembled and a detailed visual inspection of all co_rrn-

ponents has been completed. All observations have been documented. Upon

the completion of the various post-disassembly tests and chemical analysis,

an analytical and explanatory report will be made.

Included in the post-disassembly tests are a series of tests to establish the

feasibility of using a KOH flush procedure to improve the electrical perfor-

mance of fuel cells which have been operated for an extended period. Four

double cell, common cathode sections were removed intact from the stack

and assembled between end plates to form small test modules. Three of

these test modules were subjected to a KOH flushing procedure, and then

operated. The fourth section was operated as a test module without pre-

treatment.

The KOH flush procedure consisted of the following:

(a) The hydrogen inlet and purge ports were capped.

(b) Four liters of a 20% KOH solution were fed into the cell through the

oxygen inlet and purge ports at a pressure of 5 psig. The KOH was

allowed to flow out through the water removal ports.

(c) Following the flushing, all three cavities were drained and then flushed

with approximately 500 cubic centimeters of nitrogen at a flow rate of

approximately 100 cubic centimeters per minute to remove the residual

KOH.

The results of this test are reported under "Part I Tasks".
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Fabrication of this breadboard stack has been col"npleted and preparations

are being made to place the unit on test.

A thermal mockup of Breadboard ]] 4 is being fabricated to establish the

performance of the advanced thermal controi design of BB # 4. This mock-

up will consist of the bottom plate, canister and heat exchanger, dome, fans,

ducts and baffle_ of ,I__L_,=BB _ a. "_'_¢_g,,_-_.__ configuration. Electric heaters will

be used to simulate the heat produced by the stack. This mockup will be

used to investigate the cooling capability of the canister-type heat exchanger

used in this design, to determine the flow resistance of the gas cooIant

through the ducts and the cooling fin system, and to demonstrate the per-

formance of advanced design coolant control valves.
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SYSTEM TEST MODELS

DESCRIPTION OF THE ALLIS-CHALMERS FUEL CELL POWER SYSTEM
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The Allis-Chalmers Fuel Cell Power System consists of the following func-

tionally interrelated subsystems:

{a)

(b)

(c)

(d)

{e)

(f)

Fuel Cell Stack (FCS)

Reactant Control and Conditioning Subsystem (RCCS)

Thermal Control and Conditioning Subsystem (TCCS)

Moisture Removal Subsystem (MRS)

Water Recovery Subsystem (WRS)

Electrical Monitoring and Control Subsystem (EMCS)

The fuel cell system, except for the V_rRS, is shown schematically in

Figure 17.

Theory of Operation

Since the cells are the power producing elements of the system, an under-

standing of the cell itself is a prerequisite for understanding the operation

of the system.

The basic elements of the cell are shown in Figure 18. The cell consists

of two porous electrodes separated by an asbestos capillary matrix which

contains the electrolyte, an aqueous solution of potassium hydroxide (KOH).

The electrode support plates, adjacent to the electrodes, provide the mechan-

ical support for the electrodes, provide passageways for distributing the

reactant gases over the surface of the electrodes, serve as current collectors,

and provide thermal control for the cells.

The simplified equations for the fuel cell reaction are as follows:

-30-



i

:I

I

I
l
I

I

I
I
I

I
I

I
I
I

I
I

I

Anode

H 2 + 20It _ Z H20 + 2e

Cathode

-IO + H20 + Ze-2 2
2 OH

Overall Reaction

H 2 + !O2 2 --_ H20 ÷ electrical energy + heat

Electrical energy is produced and reactants are consumed only when current

flows in the system.

The unique feature of this ceil construction is the asbestos capillary matrLx.

The matrix holds the electrolyte in proper contact with the electrodes regard-

less of the orientation of the cell, provides a uniform separation of the elec-

trodes, isolates the reactant gases, and allows communication of water and

hydroxyl ions between the electrodes. The possibility of non-consumable

voids (bubbles) occurring between the electrodes is eliminated by the use of

this construction. The matrix is compressed between the electrodes, which

are supported by the support plates. Thus, a compact cell is formed that

is highly resistant to shock and vibration. Repeated thermal cycling does

not materially affect the matrix or the electrodes. The corrosion resistance

of the asbestos material to the electrolyte is excellent.

During the assembly of the cell, the asbestos capillary matrix is filled with

a predetermined amount of electrolyte. When the cell is compressed, some

of the electrolyte is forced into the electrodes, forming the necessary inter-

face between the electrolyte, catalyst, and reactants. The difference in

capillary potentials between the asbestos matrix and the porous electrode

establishes an electrolyte front. By choosing the proper amount of electrolyte,

this front is maintained in the electrode and the unfilled pore volume of the

electrode provides a reservoir for storage of water and electrolyte. The

reservoir is an important feature of this type of cell because it allows the

cell to operate through a broad range of electrolyte concentration without

-31-
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any appreciable effect on performance. Thus, a measure of safety is pro-

vided to compensate for unforeseen variations in operating conditions.

If the water produced by the reaction is allowed to remain in the cell, the

electrolyte concentration is reduced. The effect of this reduction in con-

centration on the performance of a particular cell is shown in Figure 19.

This curve shows that for the amount of KOH used in this particular cell,

the best performance is obtained from 36 to 40 percent KOH concentration.

However, good performance can be obtained throughout the entire range of

34 to 41 percent. Had the cell been constructed with a different amount of

KOH, the curve would retain the same relative shape, but the curve would

be shifted either right or left. Normally, the optimum operating concen-

tration is adjusted by varying the volume of KOH solution during assembly.

The vapor pressure, temperature, and concentration characteristics of

potassium hydroxide solutions is shown in Figure 20. This figure shows

that for a given temperature the vapor pressure increases as the concen-

tration decreases. These characteristics are used for removing the water

from the cell.

Water removal is accomplished by positioning another asbestos matrix (water

transport matrix in Figure 18) directly in contact with the hydrogen gas

cavity. The water transport matrix is filled with a KOH solution whose con-

centration is slightly higher than that of the cell matrix. As water is pro-

duced, the KOH in the water transport matrix absorbs some of the water vapor

from the hydrogen gas cavity, tending to equalize the KOH concentration in

the two matrices. By maintaining a predetermined water cavity pressure,

control of the KOH concentration in both matrices is accomplished. The

driving force for the operation of the moisture removal system is provided

by the difference in the vapor pressures and KOH concentrations existing

in the cell. A typical condition is shown in Figure 21 where illustrative

values have been assigned. Since the water is produced at the hydrogen

electrode, the electrolyte in this vicinity has the lowest concentration.

The magnitude of the concentration gradients depends upon the density and
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thickness of the material holding the electrolyte, and upon the rate at which

water is produced.

The water transport matrix also isolates the hydrogen reactant gas from the

water removal cavity.

The system is completely static, the only moving parts being the valve which

controls the water cavity pressure. The system ::,ill operate in zero gravity

since fluid transfer occurs only in the gaseous state and there are no free

liquid surfaces, or components dependent upon gravity.

Subsystem Des cription

Fuel Cell Stack (FCS) - The stack shown in Figure 2Z consists of 33 two-

cell sections. The cells in a section are connected in parallel and the sections

are connected in series to provide a nominal 29 volts, d.c. at the output

terminals. Each cell has an effective electrochemical reaction area of 0.2

square foot.

Reactant Control and Conditioning Subsystem (RCCS) - The Reactant Control

and Conditioning Subsystem provides the stack with the reactant gases at a

controlled pressure, and provides the means of purging the cells of accumu-

lated inert gas contaminants which build up during operation. The RCCS,

shown mounted on the canister in Figure 23, consists of the following major

item s.

(a) Dual Inlet Valve - Isolates the stack from the reactant supply when

the fuel cell system is not operating.

(b) Hydrogen and Oxygen Pressure Regulators - Maintain the reactant

pressures to the stack at 37 psia.

(c) Hydrogen and Oxygen Purge Valves - Open the hydrogen and oxygen
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reactant cavity purge ports to allow the cavities to be flushed of inert

contaminant s.

(d) Hydrogen and Oxygen Reactant Pressure Transducers - Monitor the

reactant pressure in the stack.

(e) Hydrogen and Oxygen Overpressure Switches - Close inlet valve if

a** abnormal ;-_*_i,_=_prcssure occurs.

Thermal Conditioning and Control Subsystem (TCCS) - The simplified re-

action equations, previously discussed, show that the reaction of hydrogen

and oxygen produces electrical energy, water, and heat. Approximately

35% of this heat is removed from the fuel cell stack with the water vapor

as latent heat of vaporization. The remaining heat, over the small amount

required to maintain the stack at operating temperature, is removed by

the TCCS.

The heat produced at the electrodes is conducted by the support plates to

the stack cooling fins, which are the edges of the support plates extending

beyond the surface of the stack. Two motor-driven fans continuously cir-

culate helium gas over the cooling fins and through a gas-to-liquid heat ex-

changer to remove the heat from the canister. Figure 24 shows the flow

pattern of the helium gas, and Figure 25 shows the fans and heat exchanger

mounted in the canister dome.

The stack temperature is maintained by controlling the flow of liquid coolant

through the heat exchanger. A schematic diagram of the TCCS is shown in

Figure 26. The temperature of the stack is sensed by a thermistor imbedded

in the stack which provides a signal to the electronic control circuitry, which,

in turn, operates the liquid coolant valve. During the periods when the liquid

coolant valve is closed, the coolant bypasses the heat exchanger through the

coolant bypass valve.

During startup the warmup heaters and the fan motors are energized, and
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the liquid coolant valve is closed. Heat is transferred from the heaters to

the stack via the circulating helium gas. The heaters are de-energized

when the stack temperature reaches 185°F. A section of the heater is used

to maintain the stack at operating temperature during low load or standby

c on dition s.

Moisture Removal Subsystem (MRS) - The Moisture Removal Subsystem

removes the water vapor from the cells by controlling the pressure in _l,=

water removal cavity.

Figure Z7 shows the basic technique used for controlling the water cavity

pressure. The temperature sensing circuit of the vacuum controller has an

output characteristic which closely matches the vapor pressure temperature

characteristic of KOH solutions. Thus, a reference voltage is provided

which is equivalent to the proper vapor pressure for the sensed temperature,

and the preset KOH concentration. A pressure transducer, ahead of the

moisture removal solenoid valve, senses the actual pressure of the water

removal cavity and provides a voltage signal equivalent to this pressure.

The difference between these two voltage signals controls the operation of

the moisture removal valve.

Water vapor from the fuel cell stack may be vented to space, to the Water

Recovery Subsystem for mission use, or to a ground support vacuum venting

system.

Water Rec0yery Subsystem !.WRS) - The water vapor removed by the MRS

is condensed, recovered, accumulated and transferred to a storage inter-

face as potable water by the Water Recovery Subsystem. A schematic dia-

gram of this subsystem is shown in Figure 28. Figure 29 shows a bread-

board model of the subsystem. The WRS consists of a condenser assembly,

a deionizer, and a diaphragm pump along with its associated valves, regu-

lators and monitoring devices. Helium is supplied from an interface to

operate the pump and to maintain the gas coolant pressure in the canister.

Liquid coolant lines and bypass valve for the condenser are as shown in

Figure 28.
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Before entering the condenser, the water vapor passes through a 3-way

valve, where it can bypass the condenser and be vented directly to space

vacuum without any adverse effect on fuel cell performance. (In the bread-

board model shown in Figure Z9, two Z-way valves are used in place of the

3-way valve. )

A cell section of the condenser is shown exploded in Figure 30. The section

consists of a steam plate and two water coolant plates, separated by asbestos

matrices and porous support plaques. The condenser assembly consists of

two such cell sections. The water enters the condenser cell at the steam

plate. Liquid coolant is circulated on the outside surface of the water coolant

plates, establishing, by conduction, a condensing surface at the innermost

support plaque. The condensed vapor is forced through the asbestos matrix

by the pressure differential established across the cell, and thus, operation

under zero gravity conditions is achieved. The capillary action of the asbestos

matrix will allow only water to pass, thus the liquid water is separated

from any non-condensible gases and water vapor. Water is removed from

the cell at the inside surface of the water coolant plates.

The condensed water passes through a deionizer where it is neutralized by

removing any small amount of ionic impurities such as K ÷ and OH- which

may be carried over. The resin capacity of the deionizer is adequate

to remove all KOH carry over for the entire life of the fuel cell system,

thus assuring reliable potable water production.

The diaphragm pump is used to accumulate the water and to maintain a lower

pressure on the water side of the condenser to affect water transport

through the condenser cells. During the fill cycle the pump is powered by

space vacuum. During the pump cycle helium pressure is used to provide

the driving force to transfer the water to the storage interface. The 3-way

valve which operates the pump is controlled by magnetic reed switches in-

corporated into the pump assembly. These switches are actuated by the

amount of water in the pump.
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Electrical Monitoring and Control Subsystem (EMCS) - This subsystem

provides the controls for operating the fuel cell. It consists of a Master

Controller, Temperature Controller, Purge Controller, Water Cavity Con-

troller, and Power Supply. The various circuits are constructed on a

number of printed circuit boards, all mounted in a single package. Figure

3 1 shows a breadboard model of the EMCS.

The basic functions of the EMCS can be divided into the following:

(a)

(b)

(c)

(d)

(e)

Start, stop, load on/off and interlock controls,

Automatic operational controls,

Safety and protective controls,

Readout signals,

Manual override controls.

A brief description of the controllers relating to the functions each performs

follow s.

Master Controller - The Master Controller contains the circuitry

to perform the control functions associated with a, c, and e, above.

It performs these functions by processing the input signals and

commands in such a manner as to produce a coordinated output. The

following is a listing of the primary items monitored by the Master

Controller, and their effect.

(a) Senses the presence of proper control power voltage.

(b) Receives and executes the start, stop, load "on" and "off"

signals provided the necessary operating conditions are present.

For example, a load "on" command will not be executed unless

normal reactant pressure signals are being received.

(c) Provides external interlock capability.
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(d) Provides control power for valves and other devices in response

to small power command signals.

(e) Provides selection of automatic protection such as dropping the

load or shutting off the reactant inlet valve if the reactant

cavity pressure becomes excessive or if the module temperature

reaches an excessive predetermined temperature.

(f) Provides manual override for several of the primary module

controls.

Temperature Controller - The Temperature Controller operates

the warmup heaters during startup and maintains the proper stack

temperature during operation.

During warrnup the temperature controller provides a signal to

energize the warmup heaters located in the gas coolant ducts. These

heaters are de-energized when the stack temperature reaches 185°F.

Although the fuel cell will operate over a wide temperature range,

the normal operating temperature is maintained within 195 + 5°N.

for optimum performance and efficiency. When load is applied to the

cell, cooling is required to control the stack temperature within this

range. This is accomplished by controlling the liquid coolant solenoid

valve to regulate the flow of coolant through the fuel cell heat exchanger.

During periods of standby or low power output operation, the heat

produced by the electro-chemical reaction in the stack may not be

sufficient to maintain the system at its operating temperature. Under

these conditions a portion of the warmup heater (standby heater) is

energized by the EMCS to maintain the stack temperature between

180°F and 185°F.
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Purge Controller - This controller provides an automatically timed

command signal to the reactant purge valves on a predetermined

ampere-hour basis. In addition, the purge controller provides for

the initiation of a purge cycle whenever a "load on", or a manual

purge signal is applied to the system.

Water Cavity Controller - This controller regulates the removal

of by-product water vapor from the fuel cell stack to maintain a preset

KOH concentration in the cell matrices. The operating temperature

and actual water cavity pressure are sensed to control the operation

of the moisture removal valve.

Power Supply - All supply voltages needed to operate the EMCS

circuitry are supplied by a dc-dc inverter. The power supply is de-

signed to supply the necessary regulated voltages while operating

over an input voltage range of 18 to 35 volts dc, with an overall effic-

iency of over 75 percent.

Readout Signals - The present EMCS provides the excitation voltage

for all transducer devices used in the fuel cell module. In addition,

it provides a common point for the availability of all system readout

devices and signals, except for thermocouples and single cell voltage

monitoring.
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STATUS OF SYSTEM TEST MODELS

The following is a report on the status of the eight Z KW system test models

which are being built and tested under this contract. These systems are

described generally in the preceding section of this report starting on Page

30.

The testing being conducted on these syster_ test models is for engineering

evaluation. Its primary purpose is to assess the integration of the subsystems,

and to gather essential data on the performance of the complete systems and

subsystems, and on the electrical performance of the stack.

In the normal sequence of system testing, each subsystem (including the

stack) first is acceptance tested to verify and assess its operation and per-

formance. The subsystems then are assembled into a complete fuel cell

system which is acceptance tested to verify its operation and performance

as a complete system. A minimum of approximately 50 hours of operation

under load is logged during the system acceptance test. Follow-on engineering

evaluation testing is then conducted on the "in-house 'r units, and the deliver-

able units are shipped to their designated destinations for evaluation by NASA.

In general, system testing of the in-house units during this quarter varied

from 250 to 900 hours, with some units continuing on test. The performance

of several of the systems during the system acceptance tests is described

in this report, and V/P curves are included which summarize the follow-

on testing.

System No. 5

This open loop system {no water recovery) was the first unit in this series

to be operated as an integrated system capable of self-sustained operation.

Testing of this unit has been completed and the test results have been reported

in the preceding Quarterly Report (NAS8-2696-QPR-005).

The system was successful in attaining the primary objective of evaluating
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the automatic operation of the integrated subsystems for the first time. As

part of the test program for this unit, control settings such as purge require-

ments, moisture removal set points, etc., were optimized; operating proced-

ures were established; and trouble areas were noted.

The system was operated for 250 hours before a hydrogen leak into the

moisture removal cavity developed and the test was terminated. (Including

*_ stack _,,_--=_-_,,"_acceptance fe_f, t_ stacl_ _crllm111_t_ _ tnt_l of _l_

hours of operating time under load.) The experimental nature of the testing

of this system was a contributing factor to the early occurance of the hydrogen

leak. The stack for this unit was constructed with 30 rail thick water removal

matrices, which in previous testing had indicated a minimum life expectancy

in the range of 500-600 hours. In a test program conducted to improve the

reliability of the water removal matrix, a 50 rail thick matrix has demonstrat-

ed a greatly improved life expectancy with a subsequent improvement in

the reliability of the moisture removal subsystem. As a result of this

evaluation, the fuel cell system centerline design has been modified to in-

clude the 50 rail water removal matrices.

The performance of the Reactant Control and Conditioning Subsystem (RCCS)

was good, although some reactant pressure set-point drift was noted in the

pressure regulators. The vendor's analysis of this problem indicates the

cause to be improper annealing of the aneroid assembly. The aneroid

assemblies of all regulators in stock have been annealed and rechecked for

calibration. Those units displaying out-of-tolerance performance have been

returned to the supplier for correction and recalibration.

Some difficulties also were encountered early in the test with the Moisture

Removal Subsystem (MRS) due to a malfunctioning moisture removal valve.

A failure analysis has been received from the vendor which indicates that

a small area of plating in the solenoid cavity became loosened. This con-

dition caused partial jamming of the solenoid plunger. The vendor is re-

working and improving the design of this valve to provide a smoother solenoid

cavity without sharp corners and recesses that cause plating voids and corner

-41 -



i

!
buildup problems when electro-depositing plating inside of holes and cavities.

It is expected that this corrective action will eliminate the difficulties en-

c ounte r e d.

The moisture removal valve was replaced with an available valve of similar

design, but with a smaller orifice. From then on, the cavity pressure control

was very stable and the subsystem functioned satisfactorily.

!
!

!

The automatic purge controller in the Electrical Monitoring and Control Sub-

system (EMCS) did not function properly, and purging was performed manually

throughout the test. The automatic purge cycle based on an ampere-hour

interval was erratic. Random actuation of the purge controller is believed

to have been caused by circuit noise. The purge controller circuits have

been subsequently redesigned to eliminate the random purge cycle problems.

! The V-P performance characteristics of System No. 5 is shown in Figure 32.

!

!
A refurbishment plan for System No. 5 has been established. System No. 5

will be rebuilt with 50 mil water removal matrices and will be delivered to

NASA-MSFC.

!

!
!

|
!

!

System No. 2

The primary objectives of testing of this first closed loop system (WRS in-

cluded) was to accomplish the operation of all subsystems as a complete

integrated system; to determine satisfactory normal operation and control

settings for purge, moisture removal, etc. ; to identify possible problem

areas, or areas which may require additional investigation; and to establish

necessary procedures for system operation.

Test Procedure - This system was operated on a load profile which was

varied from Z0 amperes to 75 amperes. The load profile is shown in the

following table.
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Elapsed Time Load

(Hours) (Arnps)

0 - 2.3 20

2.3 - 26.2 40

26. Z - 29 60

29 - 37 30

37 - 45 6 0

45 - 47 75

47 - 48 30

The hydrogen, oxygen, helium, coolant and vacuum supplies, along with the

associated valving, gages, flowmeters necessary for the test were supplied

by a test bench. Figure 33 shows the system mounted on the test bench.

Results of the Acceptance Test - This test was conducted for 48 hours

under the specified load profile after initial checkout. The average power

generated by the system was 1162 watts and 55.7 kw-hrs of energy was pro-

duced. The system performed well during the entire acceptance test. The

following list shows the maximum variation in voltage between cell sections

at various current densities, and elapsed times. The voltage measurements

were made after a purge cycle was completed.

Time Current Density Voltage Variation
(Hours) (ma/cm 2 ) (Volts)

0.8 54 0. 028

I0.6 108 0. 007

24.5 I08 0. 015

36.9 81 0. 014

44.9 162 0. 030

The following lists the purge data and the resultant voltage changes.
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Elapsed Purge

Time Current Interval

(Hours) (Amps) (Amp-Hrs)

7.6 40 Z40

I0.6 40 120

18.3 4O 88

24.5 40 248

36.9 30 228

4i.0 60 g4u

44.9 60 240

Stack Voltage Cell Voltage
Increase Cell Increase

Volts % No. Volts %

0.25 0.81 23 0.041 4.6

0.07 0.23 29 0. 016 1.7 1

0.03 0. 10 1 0.030 3.33

0. II 0.36 23 0. 020 2.20

0. I0 0.31 23 0. 018 1.93

U.zJ O. It5 23 0.038 4.59

0.18 0.61 23 0.039 4.66

Purging was scheduled on a 240 amp-hr basis and was carried out effectively

except at I0.6 and 18.3 hours when extra purging was accomplished to raise

the voltage of Cells # 29 and # l, respectively.

The chemical analysis of the product water is shown in Figure 34. The

average pH value of the recovered water was 8.4.

Subsystem Performance During the Acceptance Test - The following is an

evaluation of the performance of the subsystems during the system acceptance

test.

(a) EMCS - The Master Controller satisfactorily performed its function

of insuring the adequacy of the necessary inputs and safety controls

during startup, operation and shutdown. No special evaluation tests

were performed on this controller.

The Auxiliary Master Controller satisfactorily initiated all inter-

related internal control functions for start and stop and supplied the

amplified output signals for subsystem control. No special evaluation

tests were performed on this controller.

The Moisture Removal Vacuum Controller performed satisfactorily

while maintaining the KOH concentration in the fuel cell stack between

37.7,°70 and 40. 9070. As indicated by the following table, the optimum

setting was 38 to 40070.
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(b)

(c)

(d)

% KOH

37.7 - 37.99

38.0 - 40.0

40.0- 40.9

* 1/2 hour sampled intervals

% of Time at Setting;:-"

I.I

83.8

15.1

The Temperature Controller maintained the system temperature within

a 10°F band for any given one hour interval. The average of the band,

however, varied approximately 10°F as indicated by the plot of the

temperature control band in Figure 35. The specified operating temp-

erature of the fuel cell stack is 195 + 5°F.

Figure 36 shows the short term thermal response to temperature

adjustment. The plot of recorded mean water cavity pressure shows

its direct relationship to cell temperature. The thermal response to

load change for a short sampled time interval is shown in Figure 37.

The Purge Controller was not used during the test, and all purging

was performed manually. The problems with the purge controller

were the same as reported under System No. 5.

MRS - The performance of this subsystem, including the operation

of the valve, was satisfactory throughout the test.

RCCS - This subsystem performed satisfactorily. Both the hydrogen

and the oxygen pressures were maintained in a 0.4 psi band, within

the 37 + 1 psia required value.

TCCS - Automatic warmup of the fuel cell stack was attempted, but

the duct heaters would not function under automatic control.

After completion of the testing, the canister was opened, and it was

discovered that the heaters had become detached from the heater duct

and also from the over-temperature sensing thermostat. To correct
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this problem on future systems, an improved heater installation with

optimized heat transfer to the thermostat has been designed.

Temperature measurements within the fuel cell stack versus load

current is shown in the following table. The maximum temperature

spread was 2.5°F at the 30 ampere load.

Load Current (Amps) 30 40 60 75

Cell No. Temperature (°F)

1 and 2 194. 5 198. 5 201 197

1 and 2 194 198 200. 5 196

11 194 198. 5 201 196

1 and 2 196 198.5 200. 5 196

11 196 198.5 200. 5 197. 5

II 194. 5 198.5 200 196.5

II 195 198. 5 201.5 197.7

II 195 198.5 201 197

18 and 19 195 199 199 194. 7

21 and 22 195 198.5 200.4 197

32 194 197.5 199.7 195

32 195 198.5 201 197

Several changes in temperature were recorded as a function of the

load.

Load Current
Before

20

40

60

30

60

75

Temperature (°F}
(½ Hr. Average)

After Before Afte r

40 190 195

6O 195 2OO

30 197 191

60 194 197

75 194 197

30 195 185
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Figure 38 and Figure 39 describe the character of the monitored

temperature as a function of the load current. Figure 40 shows the

demand on the primary coolant valve as a function of the load. At

an 80 ampere load current, the coolant valve was open only 34% of

the time, indicating a considerable cooling capacity design margin

and a minimized coolant vaIve cycIing.

lPnlln.0u-(3n To_t_na nf _r_torn Nn 2 - IPnlln_,_ng _ho _oopt_,,oo to_t nf

this system, the system was used for special engineering evaluation tests,

and for performance testing.

(a) Fuel Cell Transient Voltage and Current Response Test - A study

was made of fuel ceil voltage and current transient response due to

step changes in load.

With the fuel cell operating under normal conditions, the voltage and

current response was recorded for step changes in load for 0 to 40,

40 to 0, 40 to 80, and 80 to 40 amperes. In each case the data was

recorded for a minimum of 20 seconds after the load change. Voltage

response was recorded on an oscilloscope connected directly across

the output terminals. Current response was recorded on an oscillo-

graph connected across the load shunt. The time constant of the re-

cording equipment was 0. g milliseconds for voltage and 1. 5 milii-

seconds for current.

A summary of the characteristics of the voltage transient response

is shown below.

-47-



I

I
I
I

I

I
I

I
I

I
I
I

I
I

I
I
I

I
I

Load Change

Amperes

0 to 40

40 to 0

39 to 82-

82 to 39

Voltage Transient Response Data

Voltage Change
Volts

35. 30 to 30. 18

30. 18 to 35. 3Z

30. 34 to Z7.09

26.99 to 30. 35

Time in Seconds to Steady State

70% 80°70 90°70 100°7o

0. 0193 0. 175

0. 0175 0. 175

0.77 34

5.6 39

0.65 24

0.77 25

A summary of the characteristics of current response is shown in

the following table:

Load Change

(Amperes)

39 to 82

8Z to 39

Current Transient Response Data

Time in Seconds to Steady State

94% 98,% 1 00%

O. 053 O. 77 3.0

O. 053 O. 53

The time required to achieve 90% of the change in voltage after a step

load change of 40 to 80 amperes, nominal, was on the order of 650

to 770 milliseconds.

(b)

The transient current response was considerably shorter since 94070

of the current change was achieved in 53 milliseconds.

Fuel Cell Impedance Test - The fuel cell impedance in the frequency

range of 10 to 10, 000 cps was determined in the following manner.

With the fuel cell operating under normal conditions at a load of 41

amperes, a sinusoidal voltage, variable from 10 to 10,000 cps, was

superimposed across the fuel cell by means of an oscillator. The

oscillator output was passed through a power amplifier to provide 5

amperes of current except at frequencies below 40 cps where 2 amperes

was the maximum obtainable with the test equipment. The peak fre-

quency was repeated at an 80 ampere dc load for comparison with the

data obtained at 41 amperes. Results of this test are shown in Figure
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(c)

41. Also shown on this figure is the phase angle of the impedance.

Follow-on Performance Testing - The system accumulated 873 hours

of system time under load before it was shut down due to hydrogen

le_,,,,_ge into the water cavity. The stack of this system was constructed

with 30 mil thick water removal matrices as was System No. 5. The

system was operated in excess of 630 hours as a closed loop system

various times during the test is shown in Figure 42.

The following subsystem problems were encountered during per-

formance testing.

(1) EMCS - The operation of the automatic purge controller was

erratic and all purging was conducted manually at approximately 120

amp-hour intervals. The purge controller problems were the same as

encountered on System No. 5.

Several component failures were experienced in the temperature controll-

er early in the test. This troubIe was eliminated when higher quality

components became available.

Other controllers in the EMCS (moisture control and temperature

control) performed satisfactorily. A redesign program for the

EMCS was accomplished to correct these control problems.

(2) RCCS - The performance of the RCCS was good, although some

reactant pressure set-point shift was noted during the performance

test. The reactant pressure regulator problems were the same as

encountered on System No. 5.

(3) MRS - Problems with the Moisture Removal Valve were the

same as encountered on System No. 5 and the same corrective action

was taken. After substitution of the valve, the subsystem operated

well, with no further problems.
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System No. 3

This open-loop fuel cell system was acceptance tested and shipped to NASA-

MSFC on August 15, 1965. This unit is for use by MSFC personnel for

familiarization of operating techniques and for environmental testing at a

later date. Personnel from Allis-Chaimers assisted in the initial installa-

tion of this unit at the MSFC Test Facility, and in the initial startup of the

unit. A special test cabinet was also designed and constructed for the MSFC

Test Facility. The sy_ten-_ and the ÷_e_* _,_,_,,,__'_'-,_ are sho,_,n in _ioure 43.

Acceptance Test of System No. 3 The acceptance test of System No. 3

was conducted for 29 hours to the load profile shown below.

Elapsed Time Load

(Hours) (Amps)

0 - 2 20

2 - 12 40

12 14 50

14 - 18 60

18 - 18.5 70

18.5 - 23 60

23 - 25 70

25 - 27 40

27 - 28 80

28 - 29 3O

The average power generated was 1450 watts and the system produced 42. 12

KW-hrs of energy during the test. Figure 44 shows the system performance

during its acceptance test.

The following is a listing of the variation in cell section voltages at various

current densities and elapsed times during the test. The voltage measure-

ments were made after the completion of a purge cycle.
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Elapsed Time

(Hours)

Current Density
(ma/cm 2 )

Cell Section Voltage

Variation (Volts)

15.0 108 .025

18.0 162 .030

30.0 216 . 035

31.5 108 .029

31.5 162 .037

31.5 216 .047

The fuel cell reaction to a purge after 400 ampere-hours of operation at

a current density of 108 ma/cm 2 was as follows:

Before Purge

After Purge

Cell Voltage Variation Total Voltage

• 085 30.82

• 025 31. 11

The product water record and chemical analysis is shown in Figure 45.

The average pH reading for the test was 9.5.

Subsystem Performance During Test - The following is an evaluation of

the performance of the subsystems during the system acceptance test.

(a) EMCS - The Master Controller performed well during the entire

test.

During the test, the dual reactant inlet solenoid valve closed several

times. With the fuel cell under load, this caused a rapid depletion

of gases in the reactant cavities of the stack with an accompanying

decrease in stack voltage and load current. Subsequent opening of

the valve restored the fuel cell to normal operation with no detri-

mental effects on the system. This problem was caused by circuit

noise in the Auxiliary Master Controller which controls this valve.

The faulty circuit board was replaced, and no further problems were

encounte red.
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(b)

(c)

Performance of the Temperature Compensated Vacuum Controller

which operates the moisture removal valve to maintain the desired

KOH concentration in the fuel cell stack was good at loads up to 60

amperes. No evaluation of the controller could be made at loads

above 60 amperes because of the moisture removal restriction imposed

by the moisture removal valve {see following Paragraph b).

The Temperature Gontroiier maintained Lhe terc, perature of the fue!

cell stack within the range of 190 + 5°F after initial adjustment.

The ampere-hour counter of the Purge Controller did not function

properly in the early part of the test. After an error in the circuitry

of the purge controller was corrected, the controller performed

satisfactorily. Figure 46 shows the results of monitoring the ampere-

hour counter of the purge controller for a period of five hours. It

can be noted from this data that the ampere-hour counter performed

quite well with a slight deviation at a load of 30 amperes. The re-

corded data indicates a slight tendency of a "slow count" at loads of

70 and 80 amperes, and a "fast count" at loads of 30 and 40 amperes.

MRS - Because of the unavailability of the intended moisture removal

valve, a substitute valve of the same type, but with a smaller orifice

was used in the MRS. It became evident during the test that at high

loads the orifice of this substitute valve was restricting the removal

of water from the fuel cell. This resulted in dilution of the KOH

electrolyte and necessitated limiting operation of the fuel cell at

the 80 ampere load to periods of less than one hour.

RCCS - No performance deviations occurred in the RCCS during the

test. The reactant pressure regulators controlled their respective

reactant pressures within a range of one psi. The hydrogen pressure

varied from 36.9 to 37.8 psia and the oxygen pressure varied from

35.8 to 36.8 psia.
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(d} T___CCC__SS- Warmup of the fuel cell stack to the operating temperature

of 190 ° F was accomplished with the electric heating elements locat-

ed in the helium coolant ducts. However, since this heater design

was the same as for System No. Z, the heater switching was perform-

ed manually rather than automatically until the new heater assembly

design became available.

The ducts, heating elements, and "_-t_l=rm.=-̂_+_+_s were removed from

the stack and were replaced with the redesigned units. In the new

design the heating elements are mechanically attached to the surface

of the duct with a metal plate which also provides a better heat trans-

fer and a heat sink for the thermostat. A subsequent successful warm-

up test verified the automatic operation of the warmup heaters.

Typical temperatures recorded in the fuel cell stack and the TCCS

at various loads during the test are shown in Table V. The maximum

spread in fuel cell stack temperatures was 5°F, which occurred at a

load of 60 amperes.

The thermal response of the system to changes in load is shown in

Figure 47. As the load current was changed from 40 to 80 amperes

and then to 30 amperes, the average temperature changed approximately

3°F with each load change. Also shown are the water cavity pressure,

stack temperature, and voltage.

General Conclusions on the Performance - The performance of System

No. 3 was satisfactory except for operation at loads above 70 amperes where

the substitute moisture removal valve limited moisture removal from the

cell. This difficulty will be eliminated when the properly designed valve

becomes available.

The test results have adequately demonstrated that the EMCS, as presently

designed, is capable of performing its automatic control functions.
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TABLE V

Fuel Cell Stack and TCCS Ten_peralures (°F)

__During performance Test of System No. 3

Load Current

The rmocouple Location 20 30 40 50 60 70 80

Cell 1 & 2 191 192 191 191 192 191 192

Cell 1 & 2 191 192 189 189 189 189 192

Cell 1 & 2 190 191 191 191 193 191 191

Cell 11 191 192 192 192 194 192 192

Cell 11 191 192 190 190 194 192 192

Cell 11 191 192 191 191 191 191 192

Cell 11 191 192 192 191 193 191 192

Cell 11 191 192 192 191 193 191 191

Cell 18 & 19 191 192 193 192 194 192 192

Cell 21 & 22 191 192 192 191 193 191 191

Cell 32 191 192 193 193 194 192 192

Heater Surface 191 192 187 187 188 190 190

Heater Surface 191 192 186 186 191 190 190

Fan Exhaust # l 191 192 187 187 191 188 191

Fan Exhaust # 2 191 192 189 189 188 188 192

Helium Return # 2 190 191 191 191 193 190 191

Helium Return# 1 191 192 191 191 191 191 192

Heat Exchanger Out 191 192 191 190 191 190 191
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System No. 4

The stack of this closed-loop system was acceptance tested with satisfactory

results. However, when the complete system was tested with the WRS,

(closed-loop), excessive voltage drop was experienced at loads above 1200

watts. Performance curves for stack and system acceptance testing are

shown in Figure 48. When operated as an open loop system (without the WRS)

the system performance was good throughout its full power range. This

•..,-,,,,.,,.,. ,_,,, ,,,_u not u_,, uu_ervea in previous Mod. 6 systems.

This system incorporated several design changes in the water removal portion

of the stack, namely:

(a) the thickness of the water removal matrix was increased to 50 mils,

(b) modified water removal matrix support plaques were used, and,

(c) the amount of KOH used in the water removal matrix was increased.

Extensive testing on System No. 4 and on specially constructed test cells was

conducted to determine the reasons for the poor performance. An analysis

of the test results showed that the lower than normal performance was due

to the following factors:

(a) Operation as a closed loop system at loads greater than 1200 watts

caused the fuel cell stack to operate under dilute electrolyte conditions.

(b) The operating requirements of the WRS imposed operating conditions

on the fuel cell stack such that the KOH loading of this system was not

correct for closed loop operation.

As a result of this evaluation test, subsequent stacks were constructed with

a modifiedKOH loading in the water removal matrices. This corrective

action eliminated the incompatibility between the water recovery device and

the fuel cell stack.
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System No. 4 was originally scheduled for delivery as a closed loop system

to NASA-MSC for engineering evaluation, but because of ils performance,

this system was retained at Allis-Chalmers for further evaluation iesiing.

The performance of this system in the subsequent evaluation testing is also

shown in Figure 48. The testing of this unit is continuing.

System No. 8

T_._ ^_ .._ sted for appro_ !y....... per ormanc ,_ imate

i00 hours to ensure proper operation as a complete system before delivery

to MSFC. During the first thirty hours of the test, all subsystems were

evaluated and test instrumentation checkout was completed. The remainder

of the test was conducted using the acceptance test load profile. The test

was completely successful and was trouble free except for n]inor adjustments

required during the initial checkout period.

High purity hydrogen and ultra high purity oxygen reactant gases were used

on this test. Figure 49 shows the V/P curves for elapsed times of 45 and

I00.5 hours. During this test the fuel cell operated at an average power of

1.29 KW and generated a total of 129.7 KW hours electrical energy. As

shown in Figure 48, the system output voltage at Z. 0 KW load, at the end of

this test, was 29. l volts. The pHmeasurements of the product water varied

between 9. 1 and 9.7 during the test.

The Electrical Monitoring and Control Subsystem (EMCS) provided complete

control of the fuel cell temperature and KOH concentration. Throughout the

test, the fuel cell stack temperature control performed satisfactorily at all

load levels. With the exception of the initial KOH optimization testing, the

KOH percent remained within a 2% band throughout the test. Purging of the

reactant gas impurities was performed on a lapsed time basis with manual

purges interjected when a decrease in the stack voltage was observed.

Accelerometers were installed internally and externally on the fuel cell

stack for vibration testing to be conducted at MSFC.

This system was shipped to NASA-MSFC on December g8, 1965.
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System No. 1

The stack for System No. 1 has been assembled and acceptance tested. The

performance of the stack during the acceptance test is shown in Figure 50.

System No. 1 is an equivalent system and will not be tested as a complete

system.

System No. 6

This closed-loop system is scheduled for delivery to NASA-MSC in February

1966. Several design improvements have been incorporated into this system

as a result of evaluation tests performed on System No. 4. The improvements

include: 50 rail water removal matrix, modified KOH loading, and an im-

proved water removal matrix support plaque. This system is presently

being fabricated.

System No. 7

Parts for this system are being fabricated and the system is scheduled for

final assembly in January 1966.
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PROGRAM ANALYSIS

The major objective of this research and development contract is to accom-

plish adequate research and development of materials and processes and to

establish engineering criteria that will assure an operational fuel cell power

system for space vehicle applications. To demonstrate the accomplishment

of this objective, eight Z KW, 29 volt nominal, H2-O 2 fuel cell power systems

are being built. These systems are being used for engineering evaluation of

the Allis-Chalmers design and shall have as a design goal, 720 hours of re-

liable operation.

Two major milestones were achieved during this quarter in that automatic

self-sustained operation of both an open loop and a closed loop integrated fuel

cell system was demonstrated, and two systems have exceeded 720 hours of

operational testing. Performance in excess of 2.500 hours has been demon-

strated by test cells.

As a result of system testing and technological studies, the following design

concepts were established:

(a) A thicker water removal matrix and a more permeable matrix support

plaque will greatly increase the reliability of the moisture removal

subsystem and the endurance life of the fuel cell system.

(b) An optimum KOH loading for the water removal matrix was established

to provide compatibility of the static moisture removal concept of the

Allis-Chalmers fuel cell design to the water recovery subsystem.

Advanced technological studies in the area of high loading catalyst anodes

has shown that fuel cell system voltage regulation goals of 29 + 2 volts

throughout a range of 800 to 2-000 watts can be met and exceeded.

No limiting technological problems have been identified during this reporting

period.
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Figure 7 - Oxygen Plate Configuration 
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CELL CONSTRUCTION. The cell consists of two porous electrodes separated by an asbestos 
capil lory matrix, which holds the aqueous potassium hydroxide (KOH) electrolyte. The electrode 
support plates provide passageways for distributing the reactants to the cell, and serve a s  current 
collectors and terminals for the electrodes. Product water is removed via the water transport 
matrix and the water removal plate as water vapor. When assembled, the plates extend slightly 
beyond the cell, thus serving a s  cooling f i n s  for removing waste heot. 

Figure 18 
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BAFFLE 

C E L L  E L E C T R I C A L  
CONNECTORS 

C E L L  P L A T E S  
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P U R G E  L I N  

C O O L I N G  F I N S  

H E L I U M  G A S  
C I R C U L A T I N G  

/ 
D U C T  

FUEL CELL STACK. The stack, the power producing element of the system, consists of 
33 two-cell sections. Each cell has an effective electro-chemical reaction area of 0.2 square 
foot. By-product water is removed from the stack in  the vapor state using a simple and charac- 
teristically stable static moisture removal technique. Plastic ducts (arrow) direct coolant gas 
over the cell edges for thermal conditioning. 

Figure 22 
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THERMAL CONTROL AND CONDITIONING. Circulating fans and o gos-to-liquid heat ex- 
changer, mounted in the canister dome, provide thermal conditioning for the stack. The fans cir- 
culate helium gas through distribution ducts, over protruding cell fins, and then through the heat 
exchanger. Stock temperature is maintained by controlling the flow of liquid coolant through the 
heat exchanger. 

Figure 25 
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National Aeronautics & Space Administration
George C. Marshall Space Flight Center

Huntswllle, Alabama 35812
Attn: Code FR-RC

National Aeronautics & Space Administration

George C. Marshall Space Flight Center

Hunstville, Alabama 35812
Attn: Code MS-IL

National Aeronautics & Space Administration

George C. Marshall Space Flight Center

Huntsville, Alabama 35812
Att_: Code MS-T

National Aeronautics & Space Administration

George C. Marshall Space Flight Center

Huntsvillep Alabama 35812
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National Aeronautics & Space Administration

George C. Marshall Space Flight Center
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4.
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8.

9.

i0.

National Aeronautics & Space Administration

Washington, D. C. 20546

Attn: Mr. Ernst M. Cchn, Code RNW

National Aeronautics & Space Administration

Washington, D. C. 20546

Attn: Mr. George F. Esenwein, Code MAT

National Aeronautics & Space Administration

Washington, D. C. 20546

Attn: Mr. A. M. Andrus, Code ST

National Aeronautics & Space Administration

Washington, D. C. 20546

Attn: Mr. J. R. Miles, Code SL

National Aeronautics & Space Administration

Office of Manned Space Flight

Washington, D. C. 20546

Attn: Mr. Tom Albert, 0MSF/AES

National Aeronautics & Space Administration

Scientific and Technical Information Facility
P. O. Box 5700

Bethesda, Maryland 20014

National Aeronautics & Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

Attn: Mr. Thomas Hennigan

National Aeronautics & Space Administration

Langley Research Center

Langley Station

Hampton, Virginia 23365

National Aeronautics & Space Administration
Lewis Research Center

21000 Brookpark Road

Cleveland, Ohio 44135

National Aeronautics & Space Administration

Lewis Research Center

2100 Brookpark Road

Cleveland, Ohio 44135

Attn: Mr. Robert Miller
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National Aeronautics & Space Administration

Lewis Research Center

21000 Brookpark Road

Cleveland, Ohio 44135

Attn: Mr. Robert L. Cummings

National Aeronautics & Space Administration

Lewis Research Center

21000 Brookpark Road

Cleveland, Ohio 44135

Attn: Mr. Harvey L. Schwartz

National Aeronautics & Space Administration

Ames Research Center

Pioneer Project

Moffett Field, California 94035

Attn: Mr. James R. Swain

National Aeronautics & Space Administration

Ames Research Center

Mountain View, California 94042

Attn: Mr. Jon Rubenizer,

Biosatellite Project

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, California 91103

Attn: Mr. Aiji Uchiyama

National Aeronautics & Space Administration

Manned Spacecraft Center

Houston, Texas 77001

_ttn: Mr. Richard Ferguson, EP-5

National Aeronautics & Space Administration

Manned Spacecraft Center

Houston, Texas 77001

Attn: Mr. Robert Cohen

National Aeronautics & Space Administration

Manned Spacecraft Center

Houston, Texas 77058

Attn: Mr. Hoyt McBryar, EP-5, Building 16

National Aeronautics & Space Administration

Manned Spacecraft Center

Houston, Texas 77058

Attn: Mr. Forrest E. Eastman, EE-4
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U. S. Army Engineer R&D Labs.

Fort Belvoir, Virginia 22060
Attn: Electrical Power Branch

U. S. Army Engineer R&D Labs.

Fort Monmouthp New Jersey 07703

Attn: (Code SELRA/SL-PS)

U. S. Army Research Office

Physical Sciences Division

3045 Columbia Pike

Arlington, Virginia 22204

Army Materiel Command
Research Division

AMCRD-RSCM T-7

Washington, D. C. 20012

Army Missile Command

Redstone Arsenal, Alabama 35808

Attn: James B. Wright AMICOM-DR&D

Natrick Labs.

Clothing & Organic Materials Div.

Natrick. Massachusetts 01760

Attn: Mr. Leo A. Spano/R.No Walsh

[1. S. Army TRECOM

Physical Sciences Croup

Fort Eustis, Virginia 23604
Attn: (SMOFE)

II. S. Army Research Office

Box CM, Duke Station

Durham, North Carolina 27706

Attn: Dr. Wilhelm Jorgensen/Mr. Paul Creer

II. S. Army Mobility Command
Rest'arch Division

Center Line, Michigan 48015

Attn: O. Rcnius (AMSMO-RR)

tlq., ll. S Army Materiel Command

1)vvt lop_neut Division

Washington, Do Co 20310

Attn. Marsh:ill D. Aikc, n (AMCRD-DE-MO-P)
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30.

31.

32.

DEPARTMENT OF THE NAVY

Office of Naval Research

Department of the Navy

Washington, D. C. 20350
Attn: Dr. Ralph Roberts/Mr. H. W_ Fox

Bureau of Naval Weapons

Department of the Navy

Washington, D. C. 20350

Attn: (Code RAAE)

II S. Naval Research Laboratory

Washington, D. C. 20390
Attn: (Code 6160)

33.

3l_.

35.

36.

Burea, of Ships

Department of the Navy

Washington, D. C. 20350
Attn: Mr. Bernard B. Rosenbaum/Mr. C. F. Viglotti

Naval Ordnance Laboratory

Department of the Navy

Corona, California 91720

Attn: Mr. William C. Spindler (Code 441)

Naval Ordnance Laboratory

Department of the Navy
Silver Spring, Maryland 20907

Attn: Mr. Philip B. Cole (Code WB)

U. S. Navy Marine Engineering Laboratory

Special Projects Division
Annapolis, Maryland 21402
Attn:: Mr. J. H. Harrison

37.

3_.

DEPARTMENT OF THE AIR FORCE

Wright-Patterson AFB

Aeronautical Systems Division

Dayton, Ohio 45433

Attn: Mr_ George W. Sherman, APIP

AF Cambridge Research Lab.
Attn: CRZE

L. G. Hanscom Field

Bedford, Massachusetts 01731
Attn: Francis X. Doherty/Mr. E. Raskind (Wing F)
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39.

40.

Rome Air Development Center, ESD

Griffiss AFB, New York 13442

Attn: Mr. Frank J. Mollura

Wright Air Development Div.

Wright-Patterson AFB, Ohio 45433

Attn: WWRMFP-2

ATOM!C ENE_RGY COMMISSION

41, Mr. Donald B. Hoatson

Army Reactor, IARD

U. S. Atomic Energy Commission

Washington, D. C. 20545

OTRER GOVERNMENTAGENCIES

_2. Office, DDR&E: USW & BSS

The Pentagon

Washington, D.C. 20301

Attn: G. B. Wareham

43. Mr. Kenneth B. Higbie
Staff Metallurgist

Office, Director of Metallurgy Research
Bureau of Mines

Interior Building

Washington, D.C. 20240

_, Institute for Defense Analyses

Research and Engineering Support Division

400 Army-Navy Drive

Arlington, Virginia 22202

Attn: Dr. George C. Szego/Dr. R. Briceland/R. Hamilton

_5. Power Information Center
University of Pennsylvania

Moore School Building

200 South 33rd Street

Philadelphia, Pennsylvania 19104

_6. Office of Technical Services

Department of Commerce

Washington, D.C. 20009
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48.

49.

50.

51.

52.

53.
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55.

PRIVATE INDUSTRY

Alfred University

Alfred, New York

Attn: Professor T. J. Gray

Allison Division of General Motors

Indianapolis, Indiana 46206

Attn: Dr. Robert E. Henderson

American Cyanamid Company

1937 N. Main Street

Stamford, Connecticut

Attn: Dr. R. G. Haldeman

AmericanMachlne & Foundry

689 Hope Street

Springdale, Connecticut 06879
Attn: Dr. L. H. Shaffer

Research & Development Division

Astropower Inc.

2968 Randolph Avenue

Costa Mesa, California

Attn: Dr. Carl Berger

92626

Aerospace Corp.
P. O. Box 95085

Los Angeles, Callfornia 90045

Attn: Tech. Library Documents Group

Battelle Memorial Institute

505 King Ave.

Columbus, Ohio 43216

Attn: Dr. C, L. Faust

Bell Telephone Laboratories, Inc.

Murray Hill, New Jersey 07971

Attn: Mr. U. B. Thomas

Clevite Corporation

Mechanical Research Division

540 East 105th Street

Cleveland, Ohio 44108

Attn: A. D. Schwope
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56. Electrochimica Corp.

1140 O'Brien Drive

Menlo Park, California 94025

Attn: Dr. Morris Eisenberg

57.

58.

59.

60.

61.

62.

63.

65.

Electro-Optical Systems, Inc.

300 North Halstead Street

Pasadena, California 91107

Attn: E. Findl

Engelhard Industries, Inc.

497 Delancy Street

Neward 5, Nee Jersey 07105

Attn: Dr. J. G. Cohn

Esso Research and Engineering Company

Products Research Division

P.O. Box 215

Linden, New Jersey 07036

Attn: Dr. Robert Epperly

The Franklin Institute

Philadelphia, Pennsylvania
Attn: Hr. Robert Goodman

19105

Garrett Corp.

1625 Eye St. N.W.

Washington, D.C. 20013

Attn: George R. Shepherd

General Dynamlcs/Convair

P.O. Box 1128

San Diego, California 92112

Attn: Mr. R. W. Antell

Electrical Systems Dept. 549-6

General Electric Company

Direct Energy Conversion Operations

Lynn, Massachusetts 01901

General Electric Company

Research Laboratory

Schenectady, Nee York 12301

Attn: Dr. H. Liebhafsky

General Electric Company

Missile and Space Vehicle Department

P.O. Box 8555

Philadelphia, Pennsylvania 19101

Attn: A. D. Taylor
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6_o
General Motors Corp.

Box T

Santa Barbara, California 93102

Attn: Dr. C. R. Russell/ Dr. Joseph Smatko

67. Globe-Union, Inc.

900 E. Keefe Avenue

Milwaukee, Wisconsin 53401

Attn: Dr. C. K. Morehouse

Institute of Gas Technology

State and 34th Streets

Chicago 16, lllinois

Attn: Mr. B. S. Baker

69. Johns Hopkins University

Applied Physics Laboratory

8621 Georgia Avenue

Silver Spring, Maryland 20910

Attn: W.A. Tynan

70, Lessona Moos Laboratories

Lake Success Park

Community Drive

Great Neck, New York 11020
Attn: Dr. A. Moos

71. McDonnell Aircraft Corporation

Attn: Project Gemini Office

P.O. Box 516

St. Louis 66, Missouri 63166

72. Monsanto Research Corporation

Boston Laboratories

Everett, Massachusetts 02149

Attn: Dr. J. O. Smith

73. Monsanto Research Corporation

Dayton Laboratory

Dayton, Ohio 44221

Attn: Librarian

7h • North American Aviation Co.

S&ID Division

Downey, California 90241

Attn: Dr. James Nash

75. Oklahoma State University

Stillwater, Oklahoma 74075

Attn: Prof. William L. Hughes

School of Electrical Engineering
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76. Pratt and Whitney Aircraft Division

United Aircraft Corporation

East Hartford, Connecticut 06108
Attn: Librarian

77.

78.

Radio Corporation of America

Astro Division

Heightstown, New Jersey 08520

Attn: Dr. Seymour Winkler

Radio Corporation of America

Somerville, New Jersey 08876

Attn: Dr. G. Lozier

79.

80,

Speer Carbon Company

Research and Development Laboratories

Packard Road at 47th Street

Niagara Falls, New York 14304

Stanford Research Institute

820 Mission Street

So. Pasadena, California 91108

Attn: Dr. Fritz Kalhammer

81. Thiokol Chemical Corporation

Reaction Motors Division

Denville, New Jersey 07834

Attn: Dr. D. J. Mann

82. Thompson Ramo Wooldridge, Inc.

23555 Euclid Avenue

Cleveland, Ohio 44115

Attn: Mr. Victor Kovacik

83. Unified Science Associates, Inc.

826 S. Arroyo Parkway

Pasadena, California 91105

Attn: Dr. Sam Naiditch

81| • Union Carbide Corporation

12900 Snow Road

Parma, Ohio 44129

Attn: Dr. George E. Evans

85. University of California

Space Science Laboratory

Berkeley, California 94701

Attn: Prof. Charles W. Tobias
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_6. University of Pennsylvania

Electrochemistry Laboratory

Philadelphia, Pennsylvania 19104
Attn: Prof. John O'M. Bockris

87. University of Pennsylvania

Philadelphia, Pennsylvania

Attn: Dr. Manfred Altmam

19104

88. Western Reserve University

Cleveland, Ohio 44101

Attn: Prof. Ernest Yeager

89. Yardney Electric Corp.

New York, New York I0001

Attn: Dr. Paul Howard

No_:

Any requests for changes or additions to this distribution list must be

addressed to :

National Aeronautics & Space Administration

George C. Marshall Space Flight Center

Huntsville, Alabama 35812

Attention : Code PR - RC
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